Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Authors: not saved
Abstract:

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evaluate and compare the performance of these methods, we have focused on separation of noisy and noiseless sources. Simulations results demonstrate that proposed method for employing fitness function have rapid convergence, simplicity and a more favorable signal to noise ratio for separation tasks based on particle swarm optimization and continuous genetic algorithm than binary genetic algorithm. Also, particle swarm optimization enjoys shorter computation time than the other two algorithms for solving these optimization problems for multiple sources.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

research of blind signals separation with genetic algorithm and particle swarm optimization based on mutual information

blind source separation technique separates mixed signals blindly without any information on the mixing system. in this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. in these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. in order to evalu...

full text

Comparative Research on Particle Swarm Optimization and Genetic Algorithm

Genetic algorithm (GA) is a kind of method to simulate the natural evolvement process to search the optimal solution, and the algorithm can be evolved by four operations including coding, selecting, crossing and variation. The particle swarm optimization (PSO) is a kind of optimization tool based on iteration, and the particle has not only global searching ability, but also memory ability, and ...

full text

Comparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems

Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...

full text

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables

A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  77- 88

publication date 2010-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023